Antenna design 3: RFID tag antennas using AMCs

Dongho Kim, Professor, Ph/D
Antennas & EM applications Lab., Sejong University

dongkim@sejong.ac.kr
Overview – RFID

- Normal operation of RFID antennas
 - Applications: identification, management, tracking, etc.
 - Almost all tags are designed for stand-alone operation in air
 - Air has relative permittivity (ε_r) = relative permeability (μ_r) = 1
 - However, are they really installed in air?

Scenario I

Successful identification

RFID Reader antenna

RF energy

Tag antenna

Information
Overview – RFID

- Problem of conventional RFID tag antennas
 - Tags do not properly operate on metallic surfaces or high dielectric materials, Why not?
 - On a metallic platform: antenna surface current is shorted out
 - On a high dielectric platform: antenna input impedance severely varies

Scenario II

Identification failure

No response (or very poor response) from the tag

RFID Reader antenna

Common Problem !!!
Overview – RFID

- How can we increase reading distances?
 - Platform (or product)-tolerant tags are needed
 - Artificial magnetic conductor (AMC) is the right technique for our problem
 - , which increases recognition distance with the minimum influence of various platforms

Scenario III

Identification success with a longer reading distance

Increased reading distance

Stronger response from the tag

RFID Reader antenna

Metallic body (or water)

AMC

Tag on an AMC
Overview – AMC

Idea: Manipulation of reflection phase

- Reflection phase
 - Perfect electric conductor (PEC): \(\pi (=180^\circ) \)
 - Perfect magnetic conductor (PMC): \(0 \)
 - Artificial magnetic conductor (AMC): \(\text{freq. dependent, controllable phase response} \)

- Antenna applications
 - Distance between an antenna & a substrate

Reflection phase

\[\begin{align*}
\text{PEC} & : \pi (=180^\circ) \\
\text{PMC} & : 0 \\
\text{AMC} & : \text{freq. dependent, controllable phase response}
\end{align*} \]

\[\begin{align*}
\beta h + \beta h & \pm \angle \Gamma (=\pi) = 2m\pi \\
\beta h + \beta h & \pm \angle \Gamma (=0) = 2m\pi
\end{align*} \]

Constructive interference condition

- PEC ground
 \[h = \frac{2m \mp 1}{2\beta} \pi = \frac{2m \mp 1}{4} \lambda \]
- PMC ground
 \[h = \frac{2m}{2\beta} \pi = \frac{m}{2} \lambda \]
Applications: long range

- Provides a much longer reading distance
 - Based on a creative idea of impedance matching
 - Using coupling effects between the tag and the cavity
 - Installing the tag in the metallic cavity
 - Target applications: large objects such as metallic containers, cars, trains, aircrafts, etc.

Single-band application cavity
(Recessed volume in a metallic object)

910 MHz band (Korea, USA)

RFID tag antenna
(Fairly simple geometry)

Strap type
Higgs-2 chip: 11-j130 Ω

Applications: long range

- Provides a much longer reading distance
 - Based on a creative idea of impedance matching
 - Using coupling effects between the tag and the cavity
 - Installing the tag in the metallic cavity
 - Target applications: large objects such as metallic containers, cars, trains, aircrafts, etc.

Recessed hollow cavity

모델링: CST Microwave Studio
Applications: long range

- Effect of the cavity size
 - Longer length (in the x-direction) \rightarrow increases a resonant frequency
 - Longer length (in the y-direction) \rightarrow decreases a resonant frequency
 - which can be explained parasitic inductance and capacitance
Applications: long range & dual bands

- Design of the AMC cells
 - Using offset vias \rightarrow reduced cells \rightarrow we can accommodate the AMC cells in the cavity

- Control the reflection phase
 - It's very easy to control the reflection phase by varying via offset (l_{offset}), (even with the fixed length of the cell)

Unit cell of AMC

CST MWS

Reflection coefficient [deg]

Unit cell of AMC

CST MWS
Applications: long range & dual bands

- Changing coupling effect from the bottom surface of the cavity
 - Installing an AMC on the bottom of the cavity
 - Varies phase values of the wave reflected from the AMC
 - By selecting appropriate reflection phase of the AMC, we can make the tag resonate another frequency of interest
 - At the two frequencies of interest, we can obtain the same phase values

Dual-band application
Cavity + AMC ground

- 869 MHz band (European)
- 910 MHz band (Korea, USA)

RFID tag antenna
(Fairly simple geometry)

Strap type
Higgs-2 chip: 11-j130 Ω

Changing coupling effect from the bottom surface of the cavity

- Installing an AMC on the bottom of the cavity
 - Varies phase values of the wave reflected from the AMC
 - By selecting appropriate reflection phase of the AMC, we can make the tag resonate another frequency of interest
 - At the two frequencies of interest, we can obtain the same phase values

Applications: long range & dual bands

- Effect of the AMC ground plane
 - At the three different resonant frequencies
 - The antenna shows the same overall phase value of about 90 degrees.

- Surface current density of the AMC

CST Microwave Studio 사용

Surface current density on the AMC
Performance comparison

Performance evaluation
- **Reference tag:** commercial Alien ALN-9540
- **Experimental environment**
 - RFID tester: commercial TESCOM TC-2600A
 - Reader: ALR-9800 reader with transmitted power of 30 dBm
- **Experimental results**

<table>
<thead>
<tr>
<th>Items</th>
<th>Simulation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max. gain</td>
<td>Best matching (Min. VSWR)</td>
</tr>
<tr>
<td>Alien ALN-9540</td>
<td>2.1 dB</td>
<td>1.1 @ 915 MHz</td>
</tr>
<tr>
<td>Proposed tag (single band)</td>
<td>7.1 dB</td>
<td>1.2 @ 912 MHz</td>
</tr>
<tr>
<td>Proposed tag (dual bands)</td>
<td>6.74 dB</td>
<td>1.03 @ 864 MHz</td>
</tr>
<tr>
<td></td>
<td>6.46 dB</td>
<td>1.23 @ 910 MHz</td>
</tr>
</tbody>
</table>
Conclusions

- Using the controllable behavior in reflection phase of AMCs, it’s possible to
 - Fabricate RFID tag antennas that are platform tolerant
 - Extend the recognition distance (by using a recessed metallic cavity)
 - Make the tag operate at two different frequencies